
Icarus: Trustworthy Just-In-Time Compilers with
Symbolic Meta-Execution

Naomi Smith
UCSD

Abhishek Sharma∗
UT Austin

John Renner
UCSD

David Thien
UCSD

Fraser Brown
CMU

Hovav Shacham
UT Austin

Ranjit Jhala
UCSD

Deian Stefan
UCSD

Abstract
Just-in-time (JIT) compilers make JavaScript run efficiently
by replacing slow JavaScript interpreter code with fast ma-
chine code. However, this efficiency comes at a cost: bugs
in JIT compilers can completely subvert all language-based
(memory) safety guarantees, and thereby introduce cata-
strophic exploitable vulnerabilities. We present Icarus: a
new, open-source1 framework for implementing JIT compil-
ers that are automatically, formally verified to be safe, and
which can then be converted to C++ that can be linked into
browser runtimes. Crucially, we show how to build a JIT
with Icarus such that verifying the JIT implementation stat-
ically ensures the security of all possible programs that the
JIT could ever generate at run-time, via a novel technique
called symbolic meta-execution that encodes the behaviors of
all possible JIT-generated programs as a single Boogie meta-
program which can be efficiently verified by SMT solvers.
We evaluate Icarus by using it to re-implement components
of Firefox’s JavaScript JIT. We show that Icarus can scale up
to expressing complex JITs, quickly detects real-world JIT
bugs and verifies fixed versions, and yields C++ code that is
as fast as hand-written code.

1 Introduction
The modern web runs on JavaScript, an extremely dynamic
language where even basic operations would execute slowly
without tremendous optimization work behind the scenes.
On paper, a simple task like checking the length of an ar-
ray (array.length) requires the JavaScript engine to find
what the property .length refers to with an expensive run-
time search, and then chase pointers and resolve dynamic
types to read the actual length. In practice, modern browsers
∗Work done while at UCSD.
1https://github.com/PLSysSec/icarus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695949

run JavaScript quickly. This is because browsers use inline
caches (ICs) to optimize away such expensive computations
via just-in-time (JIT) compilation [8, 11, 12, 17]. With ICs,
the JavaScript engine tracks the types of the inputs to ex-
pressions like array.length and what operations were per-
formed to compute the result, and then generates special-
ized machine-code fast path snippets—or “IC stubs”—that
efficiently handle specific cases that were previously encoun-
tered. So, after the first (slow) execution of array.length,
subsequent executions can skip the slow detour into the
engine and directly run the fast path instead.
Unfortunately, this speed comes at the cost of security.

The IC stubs produced by the JIT are fast because they re-
place the slow JavaScript interpreter with raw, low-level
machine operations that, e.g., directly access memory. These
operations may be safe to run in the original context which
triggered the generation of the IC stub; however, once linked
into the rest of the JavaScript program, the IC stub becomes
exposed to any future inputs supplied by the user (e.g., any
future values of array once a stub has been generated for
array.length). JIT authors put in run-time guards that de-
termine when the IC stub is safe to run, but bugs in the JIT
can cause necessary guards to be omitted, allowing the stub
to execute in inappropriate contexts and thereby completely
subvert all language-based safety guarantees. This, in turn,
allows attackers to compromise the security of the JavaScript
engine and the host browser.
JavaScript engines are not just theoretically vulnerable:

they are actively exploited. Of the 19 browser bugs known
to have been exploited in-the-wild in 2023, 9 were JavaScript
engine bugs [41]. Both Firefox and Chrome fell to JavaScript
engine bugs at the Pwn2Own contest in March 2024. And all
seven high-severity security bugs fixed in April’s Firefox 125
release were in the JavaScript engine—two of them in the
IC implementation. Existing tools like fuzzers struggle to
find subtle IC bugs even when specifically tuned for the
problem, because the circumstances necessary to trigger
them and then cause a crash are so specific [32]. Worse,
reasoning carefully about whether a fix is actually secure is
notoriously hard, especially within a reasonable time frame
for responding to security vulnerabilities in products relied
on by billions. Upon discovering such issues, browser teams
are forced to sacrifice performance by entirely disabling large
categories of optimizations [15, 18, 32].

https://github.com/PLSysSec/icarus
https://doi.org/10.1145/3694715.3695949

Writing and testing JITs is particularly hard because the
unsafe behavior manifests not in code explicitly written by
the JIT developers, but in stub code that is dynamically gen-
erated at runtime—and JIT compilers change the code they
generate based on heuristics tracked during program execu-
tion. This means unsafe IC stub code may only be generated
under particular circumstances and after multiple phases
of re-optimization. The principled approach to getting this
code right is through formal verification. However, previous
JIT verification efforts (e.g., for eBPF [35, 44]) have focused
on generating low-level, straight-line assembly, which don’t
translate to the more complex browser setting. To establish
the safety of the JavaScript JIT, complex control-flow oper-
ating on rich data-types must be precisely tracked through
multiple layers of code generation, the execution of gener-
ated code, and interactions with the higher-level JavaScript
language runtime.

In this paper, we bridge this gap and reconcile speed and
security via Icarus: a new framework for implementing JIT
compilers that produce efficient IC stubs that are automat-
ically and formally verified to be safe. The key challenge
we face, when comparing to traditional verification which
checks the safety of a single program, is that verifying a
JavaScript JIT requires verifying the safety of all possible IC
stubs that a particular JIT could ever generate at run-time. We
solve this challenge via four concrete contributions.

1. Symbolic Meta-Execution §2. Our first contribution is a
new technique for verifying IC stub generators by converting
them into a meta-stub: a single program whose possible
execution traces encompass the possible execution traces of
all IC stubs that could be generated by the JIT. Our meta-
stubs have two phases: (1) a generator phase that simulates
the JIT’s stub generator and any intermediate compilation
steps, and collects the final generated sequence of low-level
instructions in an instruction buffer; and (2) an interpreter
phase where the meta-stub loops over the instruction buffer,
interpreting each instruction as it goes. We can verify the
safety of the meta-stub by symbolically executing it, i.e., by
symbolically executing the stub generator and the interpreter
that loops over the instructions produced by the generator.
If verification passes, then by construction, this implies the
safety of all possible stubs generated by the JIT.

2. Optimization for Practical Symbolic Meta-Execution.
Our second contribution is an optimization which makes
symbolic meta-execution practical. A naive implementation
of symbolic meta-execution suffers from path explosion: off-
the-shelf symbolic executors get stuck in the interpreter
phase, trying every permutation of instructions that could fit
in the instruction buffer. Looping over an instruction buffer
that holds 𝑛 symbolic instructions, each of which can be one
of 𝑘 instructions, causes the executor to explore roughly 𝑘𝑛
paths to determine whether each is either safe or infeasible.
In practice, most of these paths are infeasible—the code stub

generator would never actually output most sequence of
instructions. We distill this insight by introducing a domain-
specific optimization: Icarus statically tracks instruction
emits and control-flow labels generated in the JIT to build a
control flow automaton (CFA) describing the space of possible
control-flow transfers between instructions across all pro-
grams that may be output by the generator phase. We then
use this automaton to explicitly constrain symbolic execu-
tion of the interpreter loop to only those paths corresponding
to the very sparse set of feasible instruction sequences. This
is the fundamental to making symbolic meta-execution scale
to real-world JITs—and ensure Icarus does not wither away
exploring infeasible paths.

3. Framework for IC Generation §3. Our third contribu-
tion is the Icarus domain-specific language and framework
for building verified JITs. In Icarus, the programmer speci-
fies the JIT platform by describing (1) the ops that form the
higher-level atomic building-blocks of generated IC stubs,
(2) target low-level ops to which the source-level ops are
compiled, (3) any intermediate compilers from source ops to
target ops, and (4) an interpreter that encodes the semantics
and safety requirements of the low-level target ops and the
JIT runtime. Using this platform, the JIT developer can write
individual IC stub generators that translate operations in
the source language (in our case, JavaScript) into stub code.
The Icarus framework then (1) implements symbolic meta-
execution by automatically converting the IC stub generators
along with the JIT platform into optimized meta-stubs that
can be verified via symbolic execution; and (2) translates the
IC stub generators into executable, production-ready C++
that can be integrated into a host application like a web
browser.

4. SpiderMonkey implementation and evaluation §4.
We implement Icarus in roughly 20K SLOC of Rust and use
Icarus to reimplement a significant part of Firefox’s inline
cache generator. Specifically, we port and verify 21 high-
level IC stub generators, which output ops in SpiderMon-
key’s CacheIR intermediate representation. SpiderMonkey
compiles CacheIR ops down to low-level MacroAssembler
(MASM) instructions; we port and verify the subset of the
CacheIR compiler in SpiderMonkey’s “Ion” JIT tier that cov-
ers all ops which may be output by these stub generators,
and contribute an executable semantics for (a subset of)
MacroAssembler in the form of an interpreter implemented
in Icarus. We find that Icarus can be used to implement
complex JIT programs and high-level JIT security invariants,
quickly detect real-world JIT bugs (ă30 seconds) and verify
fixed versions (in under a minute), and yield C++ code which,
when integrated back into Firefox, passes all regression tests
with no performance overhead. To our knowledge, this is the
first effort to verify real-world JavaScript JIT inline caches—
and the first effort to even define a formal (and executable)
semantics for core browser IRs like CacheIR and MASM.

.Input $0, Value

.Output Value

GuardToObject $0 A

In specialized mode only:

GuardShape $0, «addr of shape» B
In megamorphic mode only:

GuardHasGetterSetter $0, "length", «addr of get/set» C

LoadTypedArrayLenInt32Result $0 D
ReturnFromIC

Figure 1. Two forms of CacheIR IC stubs for han-
dling TypedArray .length reads generated by SpiderMon-
key. In “specialized” mode, SpiderMonkey generated a
GuardShape instruction; in “megamorphic” mode, it used a
GuardHasGetterSetter instruction instead.

2 Overview
We explain the importance of inline caches (ICs) (§2.1), why
writing secure ICs is difficult (§2.2), and how the Icarus
domain-specific language lets us implement verified ICs via
symbolic meta-execution (§2.3).

2.1 A Primer on Inline Caching

JS interpreters are slow. Consider the following JavaScript
code snippet that repeatedly evaluates array.length:
for (let i = 0; i < array.length; i++) { /* ... */ }

JS semantics make each .length access extremely slow, re-
quiring that the runtime resolve the type of array and the
.length property, and then choose between (1) reading
length’s value from a field inlined into the array object’s
memory, (2) reading from separately-allocated memory
linked to array through a pointer, (3) executing arbitrary
user-supplied (getter) code to compute the value of length
on-demand, or (4) performing some even more exotic oper-
ation to return the value of the length property. Repeating
the above at every iteration would slow the web to a crawl.
Inline Caches Make JS Fast. Modern JS engines track the
types of the inputs to an expression like array.length and
what operations are ultimately performed to compute the
result, and then generate a specialized machine-code snippet
or inline cache (IC) stub that handles the specific case that was
encountered in the first iteration. Thus, after interpreting
array.length via the “slow path” the first time around, on
subsequent iterations, the engine can use the fast IC stub,
which makes the overall loop run efficiently.
Generating IC Stubs Using CacheIR. Firefox’s JS engine
SpiderMonkey generates IC stubs in a special-purpose lan-
guage called CacheIR. The actual CacheIR stubs SpiderMon-
key generates at runtime can depend upon various heuristic
modes that govern how reusable the stubs should be. For
example, CacheIR stubs can be generated in “specialized”
mode (the default), which is meant to efficiently handle only

the exact types that triggered stub generation; or in “meg-
amorphic” mode, where the generated stub handles a wider
range of inputs, but at a small performance cost.

CacheIR Stubs for array.length. Figure 1 shows two differ-
ent CacheIR stubs generated by SpiderMonkey for handling
array.lengthwhen array is a TypedArray: a densely-packed
collection of homogenously-typed values. Both stubs begin
by using GuardToObject to check that the input array (repre-
sented as $0) is an object (A). In specialized mode, the gen-
erated stub follows this with a GuardShape instruction (B),
which confirms that array is in fact a TypedArray by compar-
ing its shape (i.e., dynamic type) to that of the original input
array value that prompted the generation of the stub. In meg-
amorphic mode, GuardShape is replaced with the slower but
more general GuardHasGetterSetter instruction (C), which
checks that the input object has a .length property that
resolves to the built-in length getter from the TypedArray

class. After the guards, the CacheIR stub implements the op-
timized “fast path” for the actual .length computation: the
LoadTypedArrayLenInt32Result instruction (D) reads the
.length property directly from a field in array’s memory
and stores it in the stub’s output register as a boxed 32-bit
integer. Once the stub is generated, compiled to machine
code, and linked into the process, SpiderMonkey splices in a
jump to the start of the IC stub at the start of the slow path
for the expression array.length (hence the name “inline”
cache). If any of the guards in the stub fail, control returns
to the slow path, and a new stub is generated to specialize
the unhandled case for future executions.

2.2 Inline Cache Bugs Compromise Security
SpiderMonkey produces fast stub code by compiling the

CacheIR ops of generated IC stubs to a lower-level instruction
set, MacroAssembler (MASM), an abstraction over platform-
specific assembly which contains potentially-dangerous
primitives like direct memory accesses. In particular, the
generated MASM in the stub’s “fast path” might have been
safe to run with the original inputs that prompted stub gen-
eration, but once linked into the JS script, the stub is exposed
to future inputs supplied by the user (e.g., future values of
array once a stub has been generated for array.length).

Guards Enforce Safety. The guards at the start of the IC
stubs check that the low-level MASM that follows them is
safe to run, or else bail execution out to the slow path. If the
guards do not suffice to ensure the safety of the fast path,
an attacker can exploit this mismatch to compromise the
security of the JavaScript engine. Consider the “specialized”
variant of the TypedArray .length stub from Figure 1. Omit-
ting either of the GuardToObject or GuardShape instructions
would result in an exploitable type confusion vulnerability.
This is because the CacheIR LoadTypedArrayLenInt32Result

instruction compiles to a raw register-relative memory load

AttachDecision

GetPropIRGenerator::tryAttachTypedArrayLength(

HandleValue value, ValueId valueId,

HandlePropertyKey key

) {

Object object = /* get from value */;

// Check input is an object.

ObjectId objectId =

writer.guardToObject(valueId); E
// Check input is a TypedArray whose .length is

// the built-in getter function.

EmitCallGetterResultGuards(object, holder, key,

propInfo, objectId, mode_); F
// Generate the TypedArray .length fast path.

writer.loadTypedArrayLenInt32Result(objectId); G
writer.returnFromIC();

return AttachDecision::Attach;

}

static void EmitCallGetterResultGuards(

HandleNativeObject object,

HandleNativeObject holder, HandlePropertyKey key,

PropertyInfo propInfo, ObjectId objectId,

ICMode mode

) {

if (mode == ICMode::Specialized) {

writer.guardShape(objectId,

object->shape()); H
/* ... */

} else {

GetterSetter* gs =

holder->getGetterSetter(propInfo.slot());

writer.guardHasGetterSetter(objectId, key, gs); I
}

}

Figure 2. SpiderMonkey CacheIR stub generator for TypedArray .length reads that generates stubs from Figure 1.

in MASM (LoadPrivateIntPtr), which is otherwise unpro-
tected from accessing arbitrary memory.

Missing (or Bad) Guards Yield Vulnerabilities. In prac-
tice, developers both forget guards and use incorrect guards—
and this almost always leads to serious security bugs. In-
deed, the “megamorphic” variant of the stub shown in
Figure 1—generated by SpiderMonkey from July 2020 to
January 2021—contains such a bug. The megamorphic vari-
ant uses a GuardHasGetterSetter instruction to check only
that array has a .length property that resolves to the ex-
pected getter hook from the TypedArray class. This check
is insufficient to protect the subsequent raw memory load
LoadTypedArrayLenInt32Result at D , because an attacker
could create a new JavaScript object tricky as follows:
const tricky = Object.create(Uint8Array.prototype);

This tricky object has the memory layout of a plain, empty
JavaScript object, but inherits all of the properties and
methods of the TypedArray subtype Uint8Array, includ-
ing the length getter. tricky would pass the guards at
A and C in the megamorphic stub, but since tricky is
smaller than a true TypedArray, the register-relative load that
LoadTypedArrayLenInt32Result at D compiles to would
read past the end of tricky’s memory, interpreting the data
there as an integer array length, which an enterprising at-
tacker can turn into an out-of-bounds read and write gadget.
This bug was discovered internally at Mozilla [32], and la-
beled sec-high—a rating reserved for “exploitable vulnerabil-
ities which can lead to the widespread compromise of many
users requiring no more than normal browsing actions” [31].

IC Stubs are Hard to Get Right. Despite their crucial role,
there is no mechanism to help developers ensure that IC
stubs in general, and guards in particular, are generated
correctly. Indeed, doing so is viciously hard, as plain, hand-
rolled C++ is used to both generate CacheIR code and further
compile it down to MASM. This makes it difficult for the JIT

developer to reason about the data- and control-flow over
all the possible IC stubs that may be generated at run-time.
SpiderMonkey’s tryAttachTypedArrayLength method as

shown in Figure 2 generated the CacheIR code for both IC
stubs from Figure 1. At G , the code generator emits the
code for the fast path that reads the TypedArray’s length

field directly from its memory. To enforce safety, the code
generator prefaces the readwith guards that validate the type
of the input. First, the generator emits the guard that the
value is an object at E . Then at F , it calls a helper function
EmitCallGetterResultGuards—reused across multiple stub
generators—that is meant to check the type of the object to
ensure the safety of the fast path.

When the helper, shown in Figure 2, is run in specialized
mode, it emits the correct GuardShape guard at H . However,
when run in a non-specialized mode, it emits a weakened
“megamorphic” guard at I that just checks that the property
being accessed has the expected getter/setter hook attached.
The challenge is that the megamorphic guard is perfectly safe
for the other contexts where EmitCallGetterResultCards is
used, where it lets the generated stub handle a wider range
of inputs. Unfortunately, though, this guard is insufficient to
protect the memory-read that tryAttachTypedArrayLength
emits after the guards!

2.3 Finding JIT Bugs with Symbolic Meta-Execution
SpiderMonkey developers note in [32] that their fuzzers
struggled to find subtle CacheIR bugs like the one in Figure 2,
even when specifically tuned to this problem, as the un-
safe stub is only generated under extremely specific circum-
stances. And this difficulty is not unique to SpiderMonkey.
In fact, one of the 9 JS engine security bugs known to have
been exploited in the wild in 2023 was an IC bug with a sim-
ilar mismatch of guards between the “monomorphic” and
“polymorphic” variants of a stub generated by Chrome’s V8
engine [9, 41]. Thus, a key challenge to formally securing

JITs is to ensure the safety of all stubs that can possibly be
generated by the JIT compiler.
Symbolic Meta-Execution. We developed the Icarus
domain-specific language (DSL) to help developers write
JITs that are safe by construction. Icarus solves the problem
of verifying all possibly-generated stubs via a novel tech-
nique called symbolic meta-execution (SME). Its key insight
is to use the definition of the stub generator, to compute a
single meta-stub: a program whose executions correspond
to the execution of all possible stubs that the generator may
produce at runtime. Then, Icarus symbolically executes this
meta-stub, ensuring that all possible paths through the meta-
stub are safe. This process verifies the safety of all stubs that
could be generated by the JIT compiler.
Turning Stub Generators into Meta-stubs. A stub gen-
erator simply emits stub code; turning that generator into
a meta-stub requires further interpreting all possible gener-
ated stubs. The resulting meta-stub, which we implement
as a Boogie program [27] and symbolically execute with
the SMT-based Corral verifier [26], executes in two phases.
First, the generator phase symbolically executes the original
stub generator and any intermediate compilation passes—for
SpiderMonkey, this is the CacheIR stub generator and the
subsequent CacheIR-to-MASM compilation step. This phase
collects a (symbolic) buffer of all possible generated target
instructions—for SpiderMonkey, these are MASM instruc-
tions. Second, the interpreter phase interprets the instruc-
tions in the buffer. Finally, after both phases complete, the
solver has a symbolic representation of the possible execu-
tions of every possibly-generated stub.
To actually check safety properties with Icarus, the JIT

developer encodes the security requirements of the JIT as
assertions associated with each target instruction and the
JIT runtime (§3.3). Thus, if Corral statically confirms that all
paths of the meta-stub satisfy their assertions, we can rest
assured that all possibly-generated stubs are safe.
The next sections walk through the generation and in-

terpretation phases for the meta-stub corresponding to the
CacheIR generator from Figure 2.
Phase 1: Generate. To symbolically execute the meta-stub,
we start by almost directly translating the IC stub generator
and any intermediate compilation layers from their original
form (e.g., Figure 2) into Boogie. The Boogie code in Figure 3
starts by initializing the instruction buffer that will hold the
generated stub (J), then generates the stub code into the
buffer (K). Zooming into the call at K , the Boogie meta-
stub calls directly into the CacheIR-to-MASM compiler to
generate the MASM instructions implemening the CacheIR
instructions (M , N , O), and appends them to the instruc-
tion buffer.2 Finally, the meta-stub calls into the interpreter
phase (L).
2Note that this is somewhat different from how the original C++ stub
generator operates.

Phase 2: Interpret. Figure 4 shows the Boogie implemen-
tation of the interpreter phase of the meta-stub for the gen-
erator from Figure 3. Symbolically interpreting the MASM
code is tricky, because stubs have non-trivial control-flow
like jumps and loops. Like a normal interpreter, the inter-
preter code here accounts for these by looping through the
instruction buffer and, for each MASM instruction, invokes a
function that implements the corresponding instruction. Un-
like a normal interpreter (e.g., SpiderMonkey), the symbolic
interpreter does not have to—and in our current implementa-
tion it does not—execute platform-specific assembly. Instead,
it lowers to a semantics of the target instructions, i.e., MASM,
defined by the JIT developer; in practice, these semantics
are code annotated with contracts that capture security in-
variants of each instruction. For example, Figure 5 shows
Boogie code for the LoadPrivateIntPtrMASM instruction’s
semantics in terms of the SpiderMonkey JIT runtime. The
assertion S encodes that the memory read in getFixedSlot

is actually in bounds—exactly the invariant violated by the
unsafe behavior in the megamorphic TypedArray stub.

Catching bugs via Meta-stub Verification. Symbolically
executing this meta-stub is equivalent to executing all pos-
sible TypedArray array.length stubs that could come out
of the CacheIR JIT. Thus, Corral should flag our Boogie
program—the meta-stub code—as containing the same error
identified in the bug report. Specifically, Corral should pro-
duce a counterexample that says that when the CacheIR stub
is generated with GuardHasGetterSetter, interpreting the
LoadPrivateIntPtr MASM instruction to read the array’s
length field ultimately violates an assertion in the imple-
mentation of $NativeObject~$getFixedSlot. In practice,
Corral does not.

2.4 Optimizing Meta-Stubs with Control-Flow
We let Corral run for amonth on themeta-stub from Figure 3,
and it had yet to reach a conclusion (i.e., neither SAT nor
UNSAT) by the time we finally killed the process. This is not
surprising: symbolically executing an interpreter that loops
over a symbolically generated buffer of symbolic instruc-
tions is recipe for choking. With, say, MASM instruction
stubs up to 25 instructions long, comprised of, say, 10 dif-
ferent types of MASM instructions, there are already 1025
potential paths through the interpreter loop. Only a tiny
handful of these paths can actually be in the instruction
buffer after the preceding generator phase. However, sym-
bolic executors, including Corral, can only find those paths
after explicitly searching through the space of all possible
instruction sequences—and thus wither away exploring dead-
ends due to the ensuing combinatorial explosion.

Icarus computes a control-flow automaton (CFA) that rep-
resents a skeleton of the possible paths, and then uses the
CFA to build an optimized meta-stub that only interprets
target instruction sequences that could have been generated,

procedure {:entrypoint}

$entrypoint($value: $Value, $key: $PropertyKey)

{

// Set up initial state. J
call $CacheIR~$init();

call $CacheIRCompiler~$init();

call $valueId := $CacheIR~$defineInputValueId();

// Generate and compile the stub. K
$MASM~pc := NilPc();

call $decision :=

$GetPropIRGenerator~$tryAttachTypedArrayLength(

$value, $valueId, $key, NilPc());

// Interpret the stub. L
if ($decision == $AttachDecision~$Attach()) {

call $MASMInterpreter~interpret();

}

}

procedure

$GetPropIRGenerator~$tryAttachTypedArrayLength(

$value: $Value, $valueId: $ValueId,

$key: $PropertyKey, pc: Pc

) returns (ret: $AttachDecision) {

// Check input is an object

call $GuardToObject($valueId, ConsPcEmitPath(pc, 0)); M
call $objectId := $OperandId~$toObjectId($valueId);

// Check input is a TypedArray whose .length is

// the built-in getter function.

call $EmitCallGetterResultGuards(

$object, $holder, $key, $propInfo, $objectId,

$mode, ConsPcEmitPath(pc, 1));

// Generate the TypedArray .length fast path.

call $LoadTypedArrayLenInt32Result($objectId,

ConsPcEmitPath(pc, 2)); N
call $ReturnFromIC(ConsPcEmitPath(pc, 3)); O
ret := $AttachDecision~$Attach();

}

Figure 3. Boogie meta-stub corresponding to the CacheIR stub generator in Figure 2.

procedure $MASMInterpreter~interpret() {

// Start at the first instruction in the stub.

$MASM~pc := $MASM~nextPc(NilPc());

loop: P
// Branch according to the current instruction.

op := $MASM~opAt($MASM~pc);

goto

interpret~$MASM~$LoadPrivateIntPtr,

interpret~$MASM~$UnboxNonDouble,

/* ... */;

interpret~$MASM~$LoadPrivateIntPtr:

// If current instruction is a LoadPrivateIntPtr:

assume is#$MASM~$LoadPrivateIntPtr(op);

call $MASMInterpreter~$LoadPrivateIntPtr(Q
$valueReg#$MASM~$LoadPrivateIntPtr(op),

$dstReg#$MASM~$LoadPrivateIntPtr(op),

$type#$MASM$$LoadPrivateIntPtr(op));

goto loop;

interpret~$MASM~$UnboxNonDouble:

// If current instruction is an UnboxNonDouble:

assume is#$MASM~$UnboxNonDouble(op);

call $MASMInterpreter~$UnboxNonDouble(...); R
goto loop;

// ... etc for other instruction types

}

Figure 4. Interpreter phase for the meta-stub in Figure 3.

thus tiptoeing around path explosion to efficiently verify
JITs.
Computing CFAs. A CFA is an over-approximation of all
possible paths through the interpreter when it interprets an
arbitrary program from the stub generator—a much smaller
over-approximation than the set of all possible paths. As
an example, consider how Icarus builds the CFA for the
TypedArray stub generator. Icarus statically follows the
paths through the generator to detect that it always first
generates the CacheIR operation GuardToObject, followed

procedure $MASMInterpreter~$LoadPrivateIntPtr(

$srcAddr: $Address, $dstReg: $Reg) {

// Read a boxed IntPtr at the given memory

// address and unbox it.

call $baseData := $MASMInterpreter~$getData(

$base#$Address($srcAddr));

call $srcData := $RegData~$readData(

$baseData, $offset#$Address($srcAddr));

// $RegData~$readData d $NativeObject~$getFixedSlot

...

}

procedure $NativeObject~$getFixedSlot(

$nativeObject: $NativeObject, $slot: $UInt32

) returns (ret: $Value) {

$shape := $Object~shape($nativeObject);

call $numFixedSlots := $Shape~numFixedSlots($shape);

assert $UInt32~lt($slot, $numFixedSlots); S
...

}

Figure 5. Interpreter for MASM LoadPrivateIntPtr.

by either GuardShape or GuardHasGetterSetter, and in ei-
ther case, ends with LoadTypedArrayLenInt32Result; these
connections form a directed graph. Icarus then recursively
visits the functions that compile these CacheIR instructions
to MASM instructions, tracing out similar structures for the
MASM instruction sequences that may come out of the com-
piler, and identifies the possible control-flow transfers be-
tween those instructions (including jumps). Finally, Icarus
inlines this information into the graph to obtain the CFA.
The left-hand side of Figure 6 shows the CFA, using the

larger light-purple boxes to show the structure of the gener-
ated CacheIR operations, and the smaller boxes they contain
to show the captured control-flow structures of the MASM
instructions they may compile to. What’s not in the fig-
ure: GuardToUint8Clamped, LoadEnclosingEnvironment, and

all the other CacheIR ops—and the many MASM instruc-
tions used to implement these ops—that this particular IC
stub generator never emits; and, any configurations that can
never occur in reality (e.g., like GuardToObject coming after
GuardShape).

Optimizing Meta-stubs. Icarus uses the CFA to produce
an optimized meta-stub. This meta-stub constrains the inter-
preter phase to only execute MASM instruction sequences
corresponding to paths in the CFA. Figure 6 shows the opti-
mized version of the interpreter from Figure 4. The optimized
interpreter (1) uses assume statements to restrict the sym-
bolic execution to only consider specific MASM instructions
at each location and (2) uses goto instructions to force exe-
cution to the next location in the CFA. When Corral verifies
the optimized meta-stub, symbolic execution only considers
the handful of about ten instruction sequences that may be
generated by the JIT, and thus finds the counterexample in a
speedy 12 seconds. Similarly, the (optimized) meta-stub for
the fixed version of the generator successfully verifies in 7
seconds, assuring the JIT developer that the bug has indeed
been fixed.

3 The Icarus Framework
In this section we describe the Icarus domain-specific lan-
guage and framework that lets developers not only imple-
ment real JITs using familiar language constructs but also ver-
ify their safety using symbolic meta-execution. With Icarus,
developers write their JIT as a single codebase. They start
by specifying their JIT platform comprising:
§ the signatures of the source-level operations of their IC
stubs, and the target-level instructions used to implement
those operations efficiently (§3.1);

§ the semantics of the source-level operations, via functions
that compile source ops to target instructions (§3.2); and

§ the semantics of the target instructions, via functions that
interpret each instruction using a mixture of symbolic
contracts and calls into the host application’s C++ imple-
mentation (§3.3).

Then, they build the top-level IC stub generators of their
JIT on top of this platform and use the Icarus toolchain to
(1) verify the correctness of the entire stack and (2) extract
C++ which they can then integrate into host applications
like browsers (§3.4). In the rest of this section we describe
these components and their representations in Icarus, with
examples from our re-implementations of SpiderMonkey’s
IC compilers.

3.1 Source Operations and Target Instructions

Instruction Sets. To define a particular JIT platform in
Icarus, the programmer starts with language declarations
that specify the syntax of source-level operations and target-
level instructions (as well as any in-between representations)

by listing the constituent “ops” of each instruction set, to-
gether with type signatures describing each op’s operands.
Figure 7 presents extracts from the language declarations for
(source) CacheIR operations and (target) MASM instructions
in our SpiderMonkey port, showing a subset of the CacheIR
and MASM operations that are relevant to the TypedArray

bug from §2.2.

Operand Types. The operand types in the language decla-
rations correspond to types in the existing C++ implemen-
tation, which makes it easy to embed Icarus code into the
browser’s C++ API. For example, operand numbers are rep-
resented in the C++ implementation of the CacheIR compiler
by typed wrappers like ValueId, ObjectId, Int32Id, etc, de-
scending from a common OperandId supertype. Constant
fields are represented by typed wrappers around memory
offsets into the constant-storage area of the CacheIR stub,
with types like Int32Field, GetterSetterField (for constant
pointers to getter/setter pair descriptors), and so on. We de-
clare these as opaque types in Icarus, and tie them back to
the underlying C++ types when we embed our code into the
browser JS engine (§3.4).

3.2 Semantics: Compiling Source Operations
Next, the JIT developer defines a compiler from the
source-level language to the target-level language (e.g., a
CacheIRCompiler which compiles SpiderMonkey’s CacheIR
to MASM), and populates the compiler definition with call-
back functions that compile individual source-level ops to
target-level ops. Figure 8 shows the Icarus code that com-
piles the GuardToObject CacheIR op into a series of MASM
ops. Icarus’s compilation functions look very similar to the
original C++ which translates CacheIR operations to MASM.
In particular, as with the original C++, Icarus lets the com-
piler (a) incrementally emit the target low-level instructions
one-by-one, (b) condition instruction emission on values ob-
served at run-time, and (c) generate low-level stub code with
unstructured control flow using labels and jumps. However,
Icarus also engineers the creation and use of labels via built-
in language features so that (d) labels can be statically tracked,
which lets Icarus automatically build the CFAs that enable
efficient symbolic meta-execution (§2.4).We detail these next,
using GuardToObject as the running example.

(a) Code Generation with the emit Statement. Existing
C++ IC stub generators incrementally append instructions
into a buffer containing the target (MASM) program. Icarus
follows the same pattern, but uses explicit emit statements
to generate and append target-level instruction to the buffer.
At C in Figure 8, the compiler emits a MASM guard op

BranchTestObject that checks if the boxed JavaScript value
in the input register indeed has the type-tag Object, and if
not, jumps to the supplied failure label. Then at D it emits
a UnboxNonDouble instruction to unbox the value to a raw

known type

CacheIRCompiler::GuardToObject

CacheIRCompiler::LoadTypedArrayLenInt32Result

failure

integer out of range

return

skip Spectre

CacheIRCompiler::GuardShape

skip Spectre

CacheIRCompiler::GuardHasGetterSetter

shape mismatch

false (getter/setter mismatch)

value is not an object

mode ? ICMode::Specialized

...

entry

MASM::BranchTestObject

MASM::UnboxNonDouble

MASM::LoadPrivateIntPtr

MASM::TagValue

MASM::Move32Int32Imm

MASM::BranchShapePtr

MASM::SpectreMovePtr

MASM::PushRegsInMask

MASM::BranchIfFalseBool

MASM::GuardNonNegIntPtrToInt32

6

18

3

4

5

2

1

19

20

21

procedure $MASMInterpreter~interpret() {

// Start at the beginning of the stub.

$MASM~pc := $MASM~nextPc(NilPc());

// Jump to one of the possible first ops.

goto

interpret~$MASM~$BranchTestObject’1,

interpret~$MASM~$Move32Int32Imm’3,

interpret~$MASM~$BranchShapePtr’4,

interpret~$MASM~$PushRegsInMask’6;

interpret~$MASM~$BranchTestObject’1:

assume emitPath#Pc($MASM~pc) ==

ConsEmitPath(ConsEmitPath(NilEmitPath(), 0), 0);

op := $MASM~opAt($MASM~pc);

call $MASMInterpreter~$BranchTestObject(

$cond#$MASM~$BranchTestObject(op),

$reg#$MASM~$BranchTestObject(op),

$branch#$MASM~$BranchTestObject(op)

);

// Jump to one of the possible successor ops.

goto interpret~$MASM~$UnboxNonDouble’2, exit;

// ... etc for other instruction types

exit:

// Returned from the stub or bailed out.

assume

emitPath#Pc($MASM~pc) == NilEmitPath();

}

Figure 6. (L) CFA for meta-stub for generator from Figure 2; (R) CFA-optimized meta-stub interpreter from Figure 4.

language CacheIR {

op GuardToObject(inputId: ValueId);

op GuardShape(objectId: ObjectId,

shapeField: ShapeField);

op GuardHasGetterSetter(objectId: ObjectId,

idField: IdField, gsField: GetterSetterField);

op LoadArrayBufferViewLengthInt32Result(

objectId: ObjectId);

op ReturnFromIC();

// ... other CacheIR instructions ...

}

language MASM {

op BranchTestObject(condition: Condition,

valueReg: ValueReg, label branch: MASM);

op UnboxNonDouble(valueReg: ValueReg,

dstReg: Reg, valueType: JSValueType);

op LoadPrivateIntPtr(srcAddr: Address,

dstReg: Reg);

// ... other MASM ops ...

}

Figure 7. Specifying the syntax CacheIR source operations
and MASM target instructions in Icarus.

object pointer, which is only safe to execute if the preceding
guard instruction succeeded.

(b) Conditional Code Generation. At A in Figure 8 the
compiler starts by testing whether the input operand is al-
ready stored unboxed. If so, the conditional turns the entire
GuardToObject instruction into a no-op by returning without
generating any MASM instructions.

op GuardToObject(inputId: ValueId) {

if CacheIRCompiler::knownType(inputId) ==

JSValueType::Object { return; } A
let inputValueReg =

CacheIRCompiler::useValueId(inputId);

let failure = CacheIRCompiler::addFailurePath(); B
emit MASM::BranchTestObject(Condition::NotEqual,

inputValueReg, failure.label_); C
emit MASM::UnboxNonDouble(inputValueReg,

ValueReg::scratchReg(inputValueReg),

JSValueType::Object); D
}

Figure 8. Icarus code for compiling the GuardToObject

CacheIR operation to MASM instructions.

(c) Control-Flow with Labels and Jumps. At B in
Figure 8 the compiler invokes addFailurePath to create the
failure bail-out path that the stub should take to fall back to
the JavaScript engine if the stub encounters input it cannot
handle. Subsequently-generated MASM operations can then
jump to the label associated with this failure path. For exam-
ple, the failure label is passed at C to the BranchTestObject
MASM op which performs a test (whether the input is an
object) and jumps to the label if the test fails.
(d) Static Label Tracking. JIT compilers like SpiderMonkey
create and use labels on-the-fly in order to generate low-level
stub code with unstructured control flow. Icarus structures
the declaration, use and placement of labels so that we can
statically track them to build the CFAs that enable symbolic

op CompareInt32Result(jsop: JSOp, lhsId: Int32Id,

rhsId: Int32Id) {

// Map the Int32 inputs to physical registers.

let lhsReg = CacheIRCompiler::useInt32Id(lhsId);

let rhsReg = CacheIRCompiler::useInt32Id(rhsId);

// Declare labels that we'll use later. E
label ifTrue: MASM;

label done: MASM;

// Compare and conditionally jump to `ifTrue`.
emit MASM::Branch32(

Condition::fromJSOp(jsop, true), lhsReg,

rhsReg, ifTrue); F
// Else, write false and jump to `done`.
storeConstBool(false,

CacheIRCompiler::outputReg); G
emit MASM::Jump(done); H
// Bind the `ifTrue` label.

bind ifTrue; I
storeConstBool(true, CacheIRCompiler::outputReg);

// Bind the `ifDone` label (to skip true branch).

bind done; J
}

Figure 9. Declaring, using and binding labels in Icarus.

meta-execution. Figure 9 shows an example of how labels
are used in the Icarus reimplementation of the compiler
for CacheIR’s CompareInt32Result operation that compares
two Int32 values. At E the compiler declares two labels,
ifTrue and done. At this juncture, the labels are “unbound”,
i.e., not yet placed into the MASM instruction sequence. We
can use labels before they are bound, e.g., to allow generated
code to jump forward to instructions emitted later, to imple-
ment if/else constructs. The code emitted at F compares
the values of lhsReg and rhsReg, and if the comparison is
true, jumps forward to the (as-of-yet unbound) ifTrue label.
Otherwise at G the code writes false to the output register
and jumps to the (also unbound) done label, to skip over the
ifTrue branch. The compiler then uses the bind statement
to place these labels into the instruction sequence by making
them refer to the next emitted op (even if that op is gener-
ated across function call boundaries). For example, at I , we
bind the ifTrue label to the MASM op which sets the output
register to true, generated within the storeConstBool func-
tion call. Finally, at J , we actually bind the done label, i.e.,
append the label to the MASM stream to refer to the first
MASM instruction that comes next in the stub after the code
block for the CompareInt32Result comparison operation.
Labels are kept distinct from values in that they cannot

be stored in variables, returned from functions, or used in
expressions (except as arguments to function calls), or—for
locally-declared labels—escape the outermost scope in which
they are declared. Icarus ensures a locally-declared label
must be bound exactly once before it goes out of scope, so
that there are no jumps to dangling, unbound labels in the
final compiled program. Put together, Icarus’s invariants en-
sure that the identity of a label being passed as an argument

op BranchTestObject(condition: Condition,

valueReg: ValueReg, label branch: MASM) {

assert condition == Condition::Equal ||

condition == Condition::NotEqual; K
let value =

MASMInterpreter::getValue(valueReg); L
let valueIsObject = Value::isObject(value); M
if condition == Condition::Equal && N
valueIsObject { goto branch; }

if condition == Condition::NotEqual &&

!valueIsObject { goto branch; }

}

op UnboxNonDouble(valueReg: ValueReg,

objectReg: Reg, valueType: JSValueType) {

assert valueType != JSValueType::Double;

// Read the boxed value from the input register.

let value = MASMInterpreter::getValue(valueReg);

if valueType == JSValueType::Object {

let object = Value::toObject(value); O
MASMInterpreter::setObject(dstReg, object);

} else { /* ... code to unbox other types ... */

}

}

impl Value {

refine safe fn toObject(value: Value) -> Object {

assert Value::isObject(value); P
let obj = unsafe { raw Value::toObject(value) }; Q
assume value == raw Value::fromObject(obj); R
obj

}

}

Figure 10. Interpreters for MASM BranchTestObject and
UnboxNonDouble instructions.

or operand can be statically determined, which lets Icarus
(1) ensure the control-flow is well-formed, and (2) compute
the CFAs that enable symbolic meta-execution (§2.4).

3.3 Semantics: Interpreting Target Instructions
The last piece of building a JIT platform in Icarus is defining
an interpreter for the target-level language, and populating
it with callback functions that specify an executable seman-
tics of the target instruction set. Each of these functions
interprets a particular target op, and typically includes a
mix of (1) contracts specifying key safety and security re-
quirements to be verified by symbolic meta-execution; and
(2) external calls into the browser’s C++ implementation to
interact with the JIT runtime and host application (i.e., the
browser). This setup gives us a foundation to verify the safety
of both the generated code and interactions between gen-
erated code and the JIT runtime, and—as a bonus—makes
the interpreter executable if translated to C++ by the Icarus
toolchain. Figure 10 shows the interpreters for the MASM
instructions emitted by the compiler in Figure 8.
BranchTestObject. The interpreter function for
BranchTestObject in Figure 10 starts with an assert

at K that specifies the precondition that this op must only
be called with a valid condition operand: Equal or NotEqual
(and not, say, LessThan). Next, at L , the interpreter calls
a helper function getValue on MASMInterpreter to get
the current boxed JavaScript value held in the input
valueReg at runtime. We then perform the actual test at
M by calling Value::isObject, a C++ function from the
SpiderMonkey runtime, on the register value. Finally, at
N , we conditionally goto the given label depending on
whether the test passes and the specific condition being
tested for, using Icarus’s built-in support for labels and
jumps (§3.2).
UnboxNonDouble. The compiler function for GuardToObject
in Figure 8 emits an UnboxNonDouble instruction only af-
ter emitting a BranchTestObject instruction. The middle
of Figure 10 shows the interpreter function for the MASM
UnboxNonDouble instruction. After some preconditions re-
quiring that the input not be a Double, at O the inter-
preter calls the helper function Value::toObject to per-
form the actual unboxing operation if the value is an ob-
ject. This external function is refined with a contract (at the
bottom of Figure 10) which requires the precondition that
the input value is indeed an object (P). The precondition
holds when UnboxNonDouble is emitted by the compiler for
GuardToObject because the preceding BranchTestObject op

explicitly ensures that the input value is an object; if we had
omitted this test, the toObject function would be unsafe to
call, and Icarus’s symbolic meta-execution would flag the
bug. Fortunately, as we did emit the test, the SME statically
verifies that the precondition holds, and hence that it is safe
to call the underlying native C++ function Value::toObject

in the JIT runtime at Q —the raw syntax marks this direct
call, bypassing the refined wrapper. Following this raw call
is a post-condition that the returned obj will indeed be the
same one boxed inside value, at R .

3.4 Building Verified and Executable JITs
With the underlying JIT platform in place, the developer can
finally write their top-level IC stub generators that emit ops
in the source language they defined—in our case, CacheIR.
Figure 11 shows the Icarus version of the C++ IC stub gen-
erator from Figure 2. We designed Icarus so that the ported
code has the structure of the original C++, but uses Icarus’s
domain-specific constructs like the emit statement to track
the generation of source-level ops and, transitively, the target-
level ops they are compiled to.
Verification. Icarus’s emit statement and label constructs
let our toolchain precisely track the possible sequences of
CacheIR and MASM instructions generated by the IC stub
generator and the control-flows between these instructions,
needed to compute the CFA-optimized meta-stub shown in
Figure 6. Icarus builds the code-generator phase of the meta-
stub by linking the locations where CacheIR ops are emitted

fn tryAttachTypedArrayLength(

value: Value, valueId: ValueId,

key: PropertyKey

) emits CacheIR {

let object = /* get from value */;

// Check input is an object.

emit CacheIR::GuardToObject(valueId);

let objectId = OperandId::toObjectId(valueId);

// Check input is a TypedArray whose .length is

// the built-in getter function.

emitCallGetterResultGuards(

object, holder, key, propInfo, objectId,

GetPropIRGenerator::mode);

// Generate the TypedArray .length fast path.

emit CacheIR::LoadArrayLengthInt32Result(objectId);

emit CacheIR::ReturnFromIC();

return AttachDecision::Attach;

}

Figure 11. Icarus code for the TypedArray .length IC stub
generator from Figure 2.

in the top-level code generator (Figure 11) with correspond-
ing callback functions in the definition of the CacheIR-to-
MASM compiler (§3.2). Icarus then follows the process de-
scribed in §2.4 to construct the CFA used to constrain sym-
bolic execution of the interpreter phase, tracing connections
between emitted MASM ops and statically-tracked labels
to identify the possible control-flows between MASM ops
across the space of possible generated stubs. Each segment of
the optimized interpreter loop calls into one of the callback
functions defined in the MASM interpreter (§3.3) to interpret
a corresponding MacroAssembler op.
The structure described above is translated into Boogie

and fed into the Corral verifier for symbolic execution. Given
the example buggy TypedArray .length IC stub generator
from §2, ported into Icarus, the verifier swiftly pinpoints
the exact flaw identified by SpiderMonkey developers [32].
Conversely, after applying the developers’ fix, we get a meta-
stub that Corral successfully verifies, thereby assuring the
safety of the IC generator.
Execution. As mentioned above, in addition to translat-
ing Icarus code into Boogie for verification, the Icarus
toolchain implements another backend which translates it
into C++ that can be embedded in the host application, i.e.,
the browser in our use case. This produces a C++ function
for each top-level stub generator, and C++ visitor functions
for each of the per-op compiler and interpreter callback func-
tions. The developer must connect the external types and
functions that they used in their Icarus code with a thin
layer of C++ binding code that bridges them to their C++
counterparts. A skeleton for this binding layer is automat-
ically generated by the toolchain. With this binding layer
in hand, the developer can wire up their verified and trans-
lated JIT code in the host application as a replacement for
the original. Organizing the translated code around the visi-
tor pattern makes it straightforward to carry out this swap

piece-by-piece. As more and more pieces of the JIT are incre-
mentally ported into Icarus and verified, the developer gains
increasing assurance of their system’s safety and security.

4 Evaluation
We implement Icarus as a collection of Rust modules: a
shared frontend including parsing, name resolution, and
type-checking logic; compilation backends to C++ and to
Boogie, as well as the CFA static analyzer; and a separate
library for parsing, printing, and optimizing Boogie code
(e.g., dead-code elimination). Our implementation totals to
19,804 SLOC of Rust, 858 SLOC of Boogie support code, and
57 SLOC of Icarus prelude code.

To evaluate the Icarus language, verifier, and translation
to C++, we port a slice of SpiderMonkey’s CacheIR JIT from
C++ to Icarus. We answer the following questions:
§ Can we implement core JIT IRs in Icarus?
§ Is Icarus expressive enough to let developers specify
security-relevant invariants about the behavior of JIT-
compiled inline cache stubs?

§ Can we implement and verify high-level CacheIR code
generators?

§ Can Icarus catch real-world CacheIR bugs?
§ How does the correctness and performance of the C++
code produced by Icarus compare with the original?
All timing and benchmarking described in this section is

done on a Lenovo ThinkPad P16 Gen 2 laptop with an Intel
Core i9-13980HX processor and 128 GB of RAM, running
Ubuntu 22.04.3 LTS virtualized under Windows 11. Numbers
quoted are averaged over 10 runs.

4.1 Implementing the CacheIR JIT with Icarus
To answer the first question we use Icarus to implement
subsets of the CacheIR and MASM instruction sets and port
part of the CacheIR-to-MASM compilation pass. Since our
goal is to verify the ported JIT compiler we also use Icarus
to give a semantics to MASM by defining an interpreter for
MASM and parts of the JavaScript runtime and its associ-
ated types and functions. We find that Icarus is expressive
enough to implement real-world JIT compilers.
CacheIR compilation.We implement 81 CacheIR instruc-
tions of the 334 total. We pick instructions that are common
in browser benchmarks (and thus highly tuned), and instruc-
tion of different categories (e.g., guards, memory operations,
type conversions, external runtime calls). We also include all
the CacheIR ops required by the high-level code-generators
we port in §4.3–§4.4. For the CacheIR-to-MASM compiler
implementation, we hew close to a direct port of the original
C++ compiler into Icarus, totalling 1,597 lines of Icarus.
MacroAssembler (and JS runtime) semantics. Since our
goal is to verify the CacheIR-to-MASM compiler and the
code-generators built on top, we define an interpreter for the

131 different MASM ops that these CacheIR ops can compile
to, in 1,891 lines of Icarus. As part of this, we also define
the interface to the JavaScript language runtime provided
by SpiderMonkey, in 1,135 lines of Icarus. This consists
of a mix of stub functions with contracts on the behavior
of the underlying C++ function (like Value::toObject in
§3.3) as well as some SpiderMonkey functions that we port
in full. We carefully reverse-engineer the semantics of each
MASM op based on its lowering to x86_64 machine code (and
interactions with the runtime). This is the first declarative
and reusable formal specification of MASM, which until now
has been ad-hoc and implicit in the the SpiderMonkey source.

4.2 Invariants about JIT-Compiled CacheIR
To understand if Icarus lets developers verify high-level
security properties of high-level code generators, we express
those properties as pre- and post-conditions at the lower
levels of the JIT and runtime. Icarus lets us encode these
invariants as assert statements, which state properties to
be statically checked; and assume statements, which provide
information to the verifier to aid in drawing the right con-
clusions about our code. These invariants propagate up the
layers of the stack to, in our case, ensure that CacheIR and
MacroAssembler instructions are used safely. For example,
in Figure 10, we assert that unboxing a Value to an Object

pointer is only permitted if the Value has the Object tag; this
ensures that uses of any MASM instructions which perform
this unboxing, like UnboxNonDouble, only pass verification
if it can be (automatically) proven that they only handle
Values for which the invariant holds. The invariant may
be upheld by the implementations of the MASM instruc-
tions themselves; or it may be upheld by the way that the
MASM instructions are combined by the CacheIR-to-MASM
compiler, like pairing a UnboxNonDouble with a preceding
BranchTestObject to ensure only correctly-tagged Values
make it through; or it may be punted all the way up to the
CacheIR level, becoming a precondition on the CacheIR in-
structions themselves and putting the onus on the top-level
code generator to ensure that those conditions are satisfied.
We find that this approach is effective in verifying many

high-level JIT security properties using Icarus, including:
TypeConfusionAvoidance.We check that accesses to data
in registers, on the stack, and on the heap will all be well-
typed at runtime, and that all conversions are well-formed
(e.g., boxed Valuemay only be downcast to an Object pointer
if the verifier can prove that the Value is always an Object).
Memory Access Bounds-Checks. Raw accesses that
MASMmakes to memory addresses are validated against the
types, bounds, and memory layouts of the base JS runtime
types being handled by the interpreter.
Guard Elision Correctness. Potentially-unsafe ops in
CacheIR and MASM code must be sufficiently protected by
preceding guard ops which rule out invalid cases.

Time (s)
Operation Code Generator Total LOC Mean 𝝈
Compare Any Null/Undef. 778 3.52 0.01

Int32 707 3.14 0.03
Strict Diff. Types 564 0.43 0.01

Get Element Dense Element 1,040 18.05 0.14
Native Fixed Slot* 1,377 47.86 0.16

Get Property Args. Object Arg 732 0.98 0.02
Native Dyn. Slot* 987 4.26 0.03
Native Fixed Slot* 970 0.86 0.01
Object Length 1,005 4.10 0.05

Int32 Binary Add 658 4.32 0.03
Operator Bitwise 881 46.26 0.39

Divide 748 16.66 0.13
Mod 735 13.99 0.04
Multiply 710 19.87 0.10
Subtract 669 4.26 0.04

Int32 Unary Arithmetic 703 2.06 0.01
Operator Bitwise 645 0.46 0.01
To Property Int32 443 0.18 0.00
Key Number (float. pt.) 749 0.44 0.01

String 444 0.18 0.00
Symbol 444 0.18 0.00

Figure 12.CacheIR code-generators that we port into Icarus
and verify for our evaluation, with verification times. Total
Icarus LOC verified is given for each code-generator, in-
cluding the lines of code in the generator function itself as
well as in lower levels of the JIT exercised by the generator
and in supporting functions in the call graph. For the code-
generators handling native object slots (*), we implement the
code paths generating direct accesses in non-megamorphic
stubs.

SafeRegisterHandling.Our port of the CacheIR-to-MASM
compiler is checked against a simplified model of the register
allocator, asserting that registers are not double-allocated,
allocated improperly, or clobbered. We also check the saving
and restoring of live-register sets around operations like calls
into C++ functions in the runtime.
JavaScript Runtime Call ABI. We model calls into the
runtime from generated MASM code and ensure that such
calls are (1) well-formed with, e.g., well-typed arguments in
their expected locations according to the ABI, and (2) robust
against clobbered caller-saved registers.

4.3 Verifying CacheIR Code Generators
We test whether Icarus can successfully verify the high-level
invariants we describe in the previous section by porting
and verifying several CacheIR code-generators from Spider-
Monkey’s JIT. Figure 12 lists the code-generators we port
for this evaluation. Since SpiderMonkey contains 270 code-
generators spread across 21 operations, we focus on a subset
of operations (e.g., “Get Property”) and, within each oper-
ation, typically a subset of the code generators. The one

Icarus No Icarus
Benchmark Unit Mean 𝝈 Mean 𝝈
ARES-6 s Ó 86.69 0.16 87.15 0.33
Octane score Ò 42,528 402 42,527 404
Six Speed ms Ó 5,916 50 5,877 46
Sunspider ms Ó 98 2 97 3
Web Tooling runs/s Ò 11.79 0.10 11.74 0.11

Figure 13. Results from the five standard JavaScript bench-
marks bundled with SpiderMonkey, showing comparable
performance between Icarus-enhanced and stock builds of
the JavaScript engine. Different benchmarks report their re-
sults in different units; Ò indicates that higher numbers are
better, and Ó that lower is better.

exception: we port and verify the entire “To Property Key”
operation. We pick different operations to cover different
parts of the JavaScript engine and to make use of a broad
range of CacheIR and MASM ops under-the-hood. The 21
code-generators that we ultimately ported have a median
total LOC of 732 lines of Icarus each, counting lines of
code in the top-level generators as well as in the slice of the
lower levels of the JIT exercised by each particular generator
(computed by summing over their call graphs).

We implement these code-generators on top of the founda-
tion of §4.1; namely, the re-implemented CacheIR-to-MASM
compiler, the MASM interpreter, and the JavaScript runtime
contracts, which together provide a base executable seman-
tics to verify the CacheIR code-generators against. As de-
scribed in §2–§3, Icarus takes these layers of code as input
and produces a CFA-optimized meta-stub in the form of a
verifiable Boogie program for each code-generator. Our ver-
ification pipeline runs each meta-stub through the Corral
program verifier, which should flag an error if any possible
stub program produced by the code-generators could violate
one of our invariants given some user input. As Figure 12
shows, Icarus verifies all the code-generators in under a
minute (and typically in under four seconds).

4.4 Reproducing and Catching Real-World Bugs
We next assess Icarus’s usefulness in catching a selection
of real-world historical CacheIR JIT security bugs from Fire-
fox’s bug tracker, covering different engine layers and kinds
of bug. For each bug, we implement a corresponding CacheIR
code-generator that reproduces the bug (along with any
supporting JIT-platform code), and run the buggy code-
generator through Icarus’s verification pipeline. We then
patch the code-generators according to the fixes the Spi-
derMonkey developers made for each bug, and re-run ver-
ification to ensure that it succeeds with the patch applied.
In §2–§3 we describe bug 1685925 (incorrectly-optimized
TypedArray .length accesses [32]) in detail. Figure 14 sum-
marizes our findings: Icarus catches all six bugs in less than
thirty seconds each and verifies the fixes in under a minute.

https://bugzil.la/1685925

Verification Time (s)
Bug Summary Buggy Fixed

Bug # Occurs During Buggy Layer Violated Invariant Median Mean 𝝈 Median Mean 𝝈
1451976 Truncate Floating Point CacheIR Compiler Type Confusion 8.26 8.24 0.06 14.39 14.33 0.14
1471361 Truncate Floating Point CacheIR Compiler Stack Consistency 5.36 5.35 0.06 16.75 16.77 0.22
1502143 Get Sparse Element CacheIR Generator JS Runtime Invariant 20.59 20.66 0.19 45.20 45.31 0.49
1651732 Get Proxy Element JS Runtime Function JS Runtime Invariant 1.06 1.06 0.02 0.81 0.81 0.01
1654947 Int32 Bitwise Shift CacheIR Compiler Register Clobbering 1.07 1.07 0.02 0.78 0.79 0.01
1685925 Get TypedArray Length CacheIR Generator OOB Memory Read 11.67 11.64 0.09 7.01 7.00 0.02

Figure 14. Previously-reported CacheIR bugs reproduced for our evaluation. Buggy Layer refers to the layer of the JIT that
introduces the bug. Verification Time indicates time taken to catch the bug and to verify the corresponding fix with Icarus.

4.5 Extracting C++ into SpiderMonkey
Icarus is designed with the intention that code written in
its DSL can be integrated straightforwardly into a host ap-
plication. We check how well Icarus measures up to this
design goal by integrating our partial re-implementation of
the CacheIR compiler back into SpiderMonkey. We evalu-
ate our Icarus-enhanced JavaScript engine against the bat-
tery of tools that SpiderMonkey makes available for correct-
ness and performance testing. Our build passes all jstests
and jit-test test suites bundled with SpiderMonkey (over
50,000 test cases). And, as Figure 13 shows, our hardened JIT
engine is as fast as the unmodified engine on the five stan-
dardized JavaScript benchmark suites that SpiderMonkey
includes in its test harness.

5 Discussion and Limitations
Scalability. Like other automated verification tools, we do
not expect Icarus’s symbolic meta-execution to scale to ar-
bitrary, branch-heavy programs. In our experience, though,
careful design and domain-specific optimizations are key
to making the verification approach practical. The Icarus
DSL, for example, steers developers toward writing programs
with statically-analyzable and reducible control-flow using
first-class language constructs for code generation (e.g., emit
and labels). This, in turn, makes it possible for us to imple-
ment domain-specific optimizations like the CFA (§2.4) and
take advantage of solver optimizations. For example, Icarus
reifies loops at the source-level and between emitted instruc-
tions into source-level loops in the meta-stub program; this
lets Corral apply built-in heuristics for loop-verification [26].
Of course, this only goes so far: unbounded loops for which
loop invariants cannot be automatically inferred may only
be verified up to a tuneable iteration bound, a limitation we
inherit from Corral. However, Corral is able to verify all our
benchmarks using its automatically inferred invariants.
Specification. Invariants in Icarus are expressed with
assert and assume statements. This means global axioms
governing the behavior and usage of data types cannot be di-
rectly expressed in Icarus. In practice, in JITs, we have found
such global axioms to be expressible as local properties of
the code operating on those data types. This, however, does

mean developers need to turn potentially high-level, declar-
ative specification into low-level, imperative (and harder
to get right) specifications. Extending Icarus with global,
declarative specification constructs that automatically gener-
ate local assertions, or take advantage of global constructs in
Boogie and Corral, could be a fruitful area for future work.
CFAs and verification. While Icarus’s control-flow au-
tomaton (CFA) optimization is “just” an optimization, i.e., it
does not introduce false positives or negatives, the verifica-
tion performance depends on the CFAs Icarus generates.
Our CFA-generation algorithm traces the code-generator’s
control-flow and emit statements to generate an over-
approximation of the sequences of instructions that may
be executed at runtime. The over-approximation means that
in the worst case, the interpreter phase may explore more
paths that necessary, which, in the worst case can limit the
scalability of the verification. Since this algorithm is recur-
sive this also means Icarus programs must be non-recursive.
This may not be a fundamental limitation, but has simplified
our implementation.
TCB when verifying JITs with Icarus. Icarus itself
has been tested but not verified, so the toolchain and hand-
written Boogie support code are both trusted components.
When verifying a JIT pipeline, the interpreter at the bottom
layer of the stack—in our evaluation, the MASM interpreter—
is also trusted: it defines the semantics of the target lan-
guage. An error in implementing the interpretation of a
target-language instruction could lead to incorrectly verify-
ing the JIT pipeline layered on top. Finally, the contracts that
developers writes for external functions (not implemented
in Icarus) are largely trusted, i.e., they should correctly de-
scribe the behaviors of the functions (as relevant to the prop-
erties being verified).
Incremental verificationwith Icarus. Icarus is designed
so that JIT code can be implemented or ported to Icarus
piecemeal, reaping the benefits of verification without hav-
ing to migrate an entire application first. Our CacheIR imple-
mentation covers a subset of the full complement of CacheIR
code generators, CacheIR instruction compilers, and MASM
instructions in the interpreter (§4.1), which grew bit-by-bit
over the course of our evaluation. When we port additional

https://bugzil.la/1451976
https://bugzil.la/1471361
https://bugzil.la/1502143
https://bugzil.la/1651732
https://bugzil.la/1654947
https://bugzil.la/1685925

chunks of the CacheIR system, we start by porting a top-
level code generator into Icarus, then port the compilers
for any CacheIR instructions the generator may emit which
are not yet supported by our implementation, and finally
extend the MASM interpreter to cover all MASM instruc-
tions which those CacheIR instructions may compile to—so
all instructions whose behavior may affect the verification
of the ported code generators are included in our model at
each step in its evolution. It is straightforward to incorporate
external code into verified Icarus programs by encapsulat-
ing such code as opaque functions refined with contracts
(§3.3). The verifier can be invoked on individual top-level
JIT code generators as verification targets, with a custom
Boogie dead-code elimination pass (which we make avail-
able as a standalone open-source component) cutting the JIT
stack down to the minimal vertical slice required for verifi-
cation. This way, new generators may be added, modified,
and verified without having to re-check the entire codebase.

Further advantage could be taken of modular verification
to improve verification times for JITs written in Icarus. As
discussed in §4.2, some invariants are entirely local to indi-
vidual instructions, and could be automatically proven by
examining the implementations of those instructions on their
own (e.g., the type-safety of a register which is allocated,
used, and deallocated within the compilation of a single
CacheIR instruction to MASM); whereas other invariants
can only be proven by examining how instructions are com-
bined (e.g., a BranchTestObjectMASM instruction making a
subsequent UnboxNonDouble instruction safe to execute). At
present, Icarus always takes a global perspective on the pro-
grams it verifies, and so the former, local kind of invariants
are repeatedly checked at every location where the corre-
sponding instruction may be emitted. A future iteration of
the Icarus verification pipeline could identify these local in-
variants and check them only once, independently, and then
take them as true when checking the program as a whole,
thus saving on verification time.

6 Related Work

Compiler and JIT Correctness. There is a rich history of
research on proving compiler correctness [28–30, 47]. Some
is particular to JITs, including reasoning about correctness
of trace-based optimizations [14, 21], proving JIT correct-
ness in a proof assistant [3–5, 33, 44]. In contrast to most
of these efforts, which manually prove that the JIT’s output
is semantically equivalent to the source—Barrière, et al. [3]
even do this for a JIT with de-optimizations!—Icarus aims
for fully automatic verification of the security properties of
the JIT emitted code. Moreover, we focus on porting and
verifying parts of existing, complex JITs (e.g., CacheIR in
Firefox) instead of building verified JITs from a clean slate.
Automatic JIT Verification. Prior work has looked at au-
tomatically proving correctness of specific analyses done

by JITs e.g., range analysis [7], as opposed to verifying the
correctness of the code emitted by the JIT itself. Previous
research has also looked at using SMT-based symbolic exe-
cution for push-button JIT verification [34, 35, 39], synthe-
sizing kernel JITs [42], but this is in the context of compiling
individual kernel (BPF) JITs where single high-level opera-
tions are translated into straight-line blocks of low-level code,
which can be directly verified by (plain) symbolic execution.
In contrast, this work focuses on browser JITs and addresses
the problem of unstructured control-flow in the generated
inline caches via meta-execution.
JIT hardening. There is also work on limiting the dam-
age of JIT bugs after they appear, including systems like
Shuffler [45] RockJIT [36], JITScope [46] JITGuard [16],
JITSec [10], NaClJIT [1], NoJITSu [38], and most recently
Chrome’s V8 Sandbox [19]. These systems typically use run-
time software-based fault isolation or fine-grain access con-
trol checks to ensure data or control-flow integrity, even in
the face of JIT bugs. Icarus, in contrast, helps developers
implement secure JIT and catch vulnerable code at compile
time, before the bug can be exploited.
Finding browser JIT bugs. Most browsers have fuzzing
teams and run fuzzers: the Firefox team, for example,
runs multiple different fuzzers targeting the JavaScript en-
gine [25], while Google runs distributed fuzzers on Chrome
on thousands of machines [2]. Every major browser teams
fine-tunes fuzzers, including Project Zero’s Fuzzilli [20]
fuzzer, which uses an IR to explicitly generate programs
that exercise parts of the underlying JIT (instead of, say,
the JavaScript parser). Many other fuzzers focus on differ-
ent parts of the JavaScript engine [6, 13, 22–24, 37, 43], go-
ing back to jsfunfuzz [40]. Unfortunately, even fuzzers like
Fuzzilli [20] and DIE [37], which find deep bugs have and
will inevitably miss many JIT bugs; Icarus, in contrast, can
help developers find and prove the absence of bugs in cases
fuzzers will have an extremely difficult time even making a
dent. Of course, running a fuzzer doesn’t typically require
rewriting parts of the JIT so the need for both approaches is
clear.

Acknowledgments
We thank the anonymous reviewers and our shepherd Jon
Howell for valuable feedback on our paper submission. We
thank Bobby Holley, Jan de Mooij, Iain Ireland, and Yulia
Startsev for fruitful discussions and feedback on our work.
This material is based upon work supported by the National
Science Foundation under Grant Nos. 2120642, 2120696,
2154964, 2155235, and 2327336; and by gifts from Mozilla
and the Google V8 team.

References
[1] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah Taylor, Brad

Chen, Derek L. Schuff, David Sehr, Cliff L. Biffle, and Bennet Yee. 2011.

Language-Independent Sandboxing of Just-in-Time Compilation and
Self-Modifying Code. In PLDI. ACM.

[2] Abhishek Arya and Cris Neckar. 2012. Fuzzing for Security. Online:
https://blog.chromium.org/2012/04/fuzzing-for-security.html.

[3] Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie,
and Jan Vitek. 2021. Formally Verified Speculation and Deoptimization
in a JIT Compiler. In POPL. ACM.

[4] Aurèle Barrière, Sandrine Blazy, and David Pichardie. 2020. Towards
Formally Verified Just-in-Time Compilation. In CoqPL.

[5] Aurèle Barrière, Sandrine Blazy, and David Pichardie. 2023. Formally
Verified Native Code Generation in an Effectful JIT: Turning the Com-
pCert Backend into a Formally Verified JIT Compiler. In POPL. ACM.

[6] Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko,
and Thorsten Holz. 2022. JIT-picking: Differential fuzzing of JavaScript
engines. In CCS. ACM.

[7] Fraser Brown, John Renner, Andres Noetzli, Sorin Lerner, Hovav
Shacham, and Deian Stefan. 2020. Towards a Verified Range Analysis
for JavaScript JITs. In PLDI. ACM.

[8] Craig Chambers, David Ungar, and Elgin Lee. 1989. An Efficient Imple-
mentation of SELF, a Dynamically-Typed Object-Oriented Language
based on Prototypes. ACM SIGPLAN Notices 24, 10 (1989).

[9] Chromium Issue Tracker 2023. Security: [0-day] Bug in the Handling
of the Arguments Object. Online: https://issues.chromium.org/issues/
40065138.

[10] Willem De Groef, Nick Nikiforakis, Yves Younan, and Frank Piessens.
2010. JITSec: Just-in-time Security for Code Injection Attacks. In
WISSEC.

[11] Jan de Mooij, Matthew Gaudet, Iain Ireland, Nathan Henderson, and
J Nelson Amaral. 2023. CacheIR: The Benefits of a Structured Repre-
sentation for Inline Caches. In MPLR. ACM.

[12] L Peter Deutsch and AllanM Schiffman. 1984. Efficient Implementation
of the Smalltalk-80 System. In POPL. ACM.

[13] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng,
Alexandros Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang,
Adam Doupé, et al. 2021. Favocado: Fuzzing the Binding Code of
JavaScript Engines Using Semantically Correct Test Cases. In NDSS.
Internet Society.

[14] Stefano Dissegna, Francesco Logozzo, and Francesco Ranzato. 2016.
An Abstract Interpretation-Based Model of Tracing Just-in-Time Com-
pilation. ACM TOPLAS 38, 2 (2016).

[15] Jeremy Fetiveau. 2019. Circumventing Chrome’s Hardening of Typer
Bugs. Online: https://doar-e.github.io/blog/2019/05/09/circumventing-
chromes-hardening-of-typer-bugs/.

[16] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. 2017. JITGuard: Hardening Just-in-Time Compilers with
SGX. In CCS. ACM.

[17] MatthewGaudet. 2023. An Inline Cache isn’t Just a Cache. https://www.
mgaudet.ca/technical/2018/6/5/an-inline-cache-isnt-just-a-cache.

[18] Sergei Glazunov. 2021. In-the-Wild Series: Chrome Infinity Bug. On-
line: https://googleprojectzero.blogspot.com/2021/01/in-wild-series-
chrome-infinity-bug.html.

[19] Samuel Groß. 2024. The V8 Sandbox. Online: https://v8.dev/blog/
sandbox.

[20] Samuel Groß, Simon Koch, Lukas Bernhard, Thorsten Holz, andMartin
Johns. 2023. FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnera-
bilities. In NDSS. Internet Society.

[21] Shu-yu Guo and Jens Palsberg. 2011. The Essence of Compiling with
Traces. In POPL. ACM.

[22] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAl-
chemist: Semantics-Aware Code Generation to Find Vulnerabilities in
JavaScript Engines. In NDSS. Internet Society.

[23] Renáta Hodován and Ákos Kiss. 2016. Fuzzing JavaScript engine APIs.
In Integrated Formal Methods. Springer.

[24] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with
code fragments. In USENIX Security. USENIX.

[25] Gary Kwong. 2017. JavaScript Fuzzing in Mozilla, 2017. Slides online:
https://nth10sd.github.io/js-fuzzing-in-mozilla/.

[26] Akash Lal and Shaz Qadeer. 2013. Reachability Modulo Theories. In
Reachability Problems. Springer.

[27] K. Rustan M. Leino. 2008. This is Boogie 2. Online: https://www.
microsoft.com/en-us/research/publication/this-is-boogie-2-2.

[28] Sorin Lerner, Todd Millstein, and Craig Chambers. 2003. Automatically
Proving the Correctness of Compiler Optimizations. In PLDI. ACM.

[29] Xavier Leroy. 2006. Formal Certification of a Compiler Back-end or:
Programming a Compiler with a Proof Assistant. In POPL. ACM.

[30] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2018. Practical Verification of Peephole Optimizations with
Alive. Commun. ACM 61, 2 (2018), 84–91.

[31] Mozilla. 2020. Security Severity Ratings/Client. Online: https://wiki.
mozilla.org/Security_Severity_Ratings/Client.

[32] Mozilla Bugzilla 2021. Crash [@ ??] or Assertion failure: Expecting
length to fit in int32, at jit/VMFunctions.cpp:2789. Online: https://
bugzilla.mozilla.org/show_bug.cgi?id=1685925.

[33] Magnus O. Myreen. 2010. Verified Just-in-Time Compiler on x86. In
POPL. ACM.

[34] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and XiWang. 2019. Scaling Symbolic Evaluation for Automated
Verification of Systems Code with Serval. In SOSP. ACM.

[35] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020.
Specification and Verification in the Field: Applying Formal Methods
to BPF Just-in-Time Compilers in the Linux Kernel. In OSDI. USENIX.

[36] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-in-Time Compi-
lation using Modular Control-Flow Integrity. In CCS. ACM.

[37] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020.
Fuzzing JavaScript Engines with Aspect-Preserving Mutation. In S&P.
IEEE.

[38] Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert,
and Michael Franz. 2020. NoJITsu: Locking down JavaScript Engines.
In NDSS. Internet Society.

[39] Boris Shingarov. 2019. Formal Verification of JIT by Symbolic Execu-
tion. In VMIL. ACM.

[40] Window Snyder and Mike Shaver. 2007. Building and Breaking
the Browser. Black Hat. Slides online: https://www.blackhat.com/
presentations/bh-usa-07/Snyder_and_Shaver/Presentation/bh-usa-
07-snyder_and_shaver.pdf.

[41] Maddie Stone and Jared Semrau an James Sadowski. 2024. We’re All in
this Together: A Year in Review of Zero-Days Exploited In-the-Wild in
2023. Online: https://storage.googleapis.com/gweb-uniblog-publish-
prod/documents/Year_in_Review_of_ZeroDays.pdf.

[42] Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Torlak.
2020. Synthesizing JIT Compilers for In-Kernel DSLs. In CAV. Springer.

[43] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion:
Grammar-Aware Greybox Fuzzing. In ICSE. IEEE.

[44] XiWang, David Lazar, Nickolai Zeldovich, AdamChlipala, and Zachary
Tatlock. 2014. Jitk: A Trustworthy In-Kernel Interpreter Infrastructure.
In OSDI. USENIX.

[45] David Williams-King, Graham Gobieski, Kent Williams-King, James P.
Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Ke-
merlis, Junfeng Yang, and William Aiello. 2016. Shuffler: Fast and
Deployable Continuous Code Re-Randomization. In OSDI. USENIX.

[46] Chao Zhang, Mehrdad Niknami, Kevin Zhijie Chen, Chengyu Song,
Zhaofeng Chen, and Dawn Song. 2015. JITScope: Protecting Web
Users from Control-Flow Hijacking Attacks. In INFOCOM. IEEE.

[47] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. 2012. Formalizing the LLVM Intermediate Representation
for Verified Program Transformations. In POPL. ACM.

https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://issues.chromium.org/issues/40065138
https://issues.chromium.org/issues/40065138
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/
https://www.mgaudet.ca/technical/2018/6/5/an-inline-cache-isnt-just-a-cache
https://www.mgaudet.ca/technical/2018/6/5/an-inline-cache-isnt-just-a-cache
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://v8.dev/blog/sandbox
https://v8.dev/blog/sandbox
https://nth10sd.github.io/js-fuzzing-in-mozilla/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2
https://wiki.mozilla.org/Security_Severity_Ratings/Client
https://wiki.mozilla.org/Security_Severity_Ratings/Client
https://bugzilla.mozilla.org/show_bug.cgi?id=1685925
https://bugzilla.mozilla.org/show_bug.cgi?id=1685925
https://www.blackhat.com/presentations/bh-usa-07/Snyder_and_Shaver/Presentation/bh-usa-07-snyder_and_shaver.pdf
https://www.blackhat.com/presentations/bh-usa-07/Snyder_and_Shaver/Presentation/bh-usa-07-snyder_and_shaver.pdf
https://www.blackhat.com/presentations/bh-usa-07/Snyder_and_Shaver/Presentation/bh-usa-07-snyder_and_shaver.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Year_in_Review_of_ZeroDays.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Year_in_Review_of_ZeroDays.pdf

	Abstract
	1 Introduction
	2 Overview
	2.1 A Primer on Inline Caching
	2.2 Inline Cache Bugs Compromise Security
	2.3 Finding JIT Bugs with Symbolic Meta-Execution
	2.4 Optimizing Meta-Stubs with Control-Flow

	3 The Icarus Framework
	3.1 Source Operations and Target Instructions
	3.2 Semantics: Compiling Source Operations
	3.3 Semantics: Interpreting Target Instructions
	3.4 Building Verified and Executable JITs

	4 Evaluation
	4.1 Implementing the CacheIR JIT with Icarus
	4.2 Invariants about JIT-Compiled CacheIR
	4.3 Verifying CacheIR Code Generators
	4.4 Reproducing and Catching Real-World Bugs
	4.5 Extracting C++ into SpiderMonkey

	5 Discussion and Limitations
	6 Related Work
	Acknowledgments
	References

